Saltar al contenido

Industrial Doctoral Thesis: Applications of deep learning techniques in Magnetic Resonance Imaging for Multiple Sclerosis: from research innovations to clinical implementation

marzo 6, 2025

By: Liliana Valencia Rodríguez
Supervised by:  Dr. Xavier Lladó, Universitat de Girona / Dr. Sergi Valverde, Tensormedical / Dr. Arnau Oliver, Universitat de Girona

 

Abstract:

This thesis explores how advanced artificial intelligence techniques, specifically deep learning, can improve the analysis of brain scans (MRI) for people with multiple sclerosis (MS) in the clinical practice.

The study focuses on three key areas. First, it introduces a new AI tool designed to accurately and consistently isolate the brain from the surrounding tissues in MRI scans. This is crucial for many analyses and can improve the accuracy of brain volume measurements, which are important for tracking disease progression. Secondly, the research develops a method to generate synthetic brain scans from existing ones. This can help improve the detection of MS lesions (areas of brain damage) while potentially reducing the need for expensive and time-consuming MRI scans.

Finally, the study investigates the practical challenges of bringing these AI tools into real-world clinical use. This includes navigating regulations and ensuring the safety and effectiveness of these technologies for patients.

In summary, this research aims to improve the diagnosis and management of MS by developing and implementing innovative AI solutions for analyzing brain MRI scans.

 

 

 

Share it!

More News

MettingItobos
septiembre 14, 2022

First presential meeting of iToBoS project

Projects

inventeurs-eu
marzo 5, 2019

InventEUrs finalitza amb la creació d’una plataforma col·laborativa entre escoles d’arreu del món

Educational Robotics, Sin categorizar, Projects

educació qualitat
octubre 16, 2014

El màster VIBOT rep una beca per a Màsters d’Excel.lència de la Fundació Catalunya-La Pedrera

Master Programs, Sin categorizar

Pdh_thesis_dina
junio 21, 2019

DOCTORAL THESIS: Advanced Underwater Vehicle Manipulation through Real-Time Motion Planning

Sin categorizar, Scientific Results