Skip to content

Industrial Doctoral Thesis: Applications of deep learning techniques in Magnetic Resonance Imaging for Multiple Sclerosis: from research innovations to clinical implementation

March 6, 2025

By: Liliana Valencia Rodríguez
Supervised by:  Dr. Xavier Lladó, Universitat de Girona / Dr. Sergi Valverde, Tensormedical / Dr. Arnau Oliver, Universitat de Girona

 

Abstract:

This thesis explores how advanced artificial intelligence techniques, specifically deep learning, can improve the analysis of brain scans (MRI) for people with multiple sclerosis (MS) in the clinical practice.

The study focuses on three key areas. First, it introduces a new AI tool designed to accurately and consistently isolate the brain from the surrounding tissues in MRI scans. This is crucial for many analyses and can improve the accuracy of brain volume measurements, which are important for tracking disease progression. Secondly, the research develops a method to generate synthetic brain scans from existing ones. This can help improve the detection of MS lesions (areas of brain damage) while potentially reducing the need for expensive and time-consuming MRI scans.

Finally, the study investigates the practical challenges of bringing these AI tools into real-world clinical use. This includes navigating regulations and ensuring the safety and effectiveness of these technologies for patients.

In summary, this research aims to improve the diagnosis and management of MS by developing and implementing innovative AI solutions for analyzing brain MRI scans.

 

 

 

Share it!

More News

twinbot-girona500
July 9, 2020

TWIN roBOTs for cooperative underwater intervention missions

Projects, Underwater Robotics

soumya-alumni
October 24, 2018

An interview with Soumya Ghose

Community, News

eduard-vidal-phd
November 28, 2019

DOCTORAL THESIS: Online 3D View Planning for Autonomous Underwater Exploration

News, Scientific Results

AUV-
June 7, 2018

Learning about the climate change: effects on the Arctic

News, Underwater Robotics