Skip to content

New article: Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction

May 7, 2019

In recent years, the deep learning based methods achieved the state of the art for medical image segmentation. However, these methods are sensitive to image intensity distribution changes such as different MRI scanner or protocol. Therefore, a neural network has to be retrained to perform similarly in other datasets. In this paper, we investigated the use of transfer learning strategy to overcome the changes in the data distribution. We reduced the number of training images by leveraging the knowledge obtained by a pre-trained network and improved the training speed by reducing the number of trainable parameters of the CNN. We tested our method on two publicly available datasets – MICCAI 2012 and IBSR – and compared them with a commonly used approach: FIRST. Our method showed similar results to those obtained by a fully trained CNN, and our method used a remarkably smaller number of images from the target domain.

 

Article from Kaisar Kushibar “Supervised Domain Adaptation for Automatic Sub-cortical Brain Structure Segmentation with Minimal User Interaction” in Scientific Report journal.

 

https://www.nature.com/articles/s41598-019-43299-z 

 

Share it!

More News

erc2016branding
March 7, 2016

We presented the results of our work as part of the ASSURE project #ECR2016

Medical Imaging Lab, News

imatge (2)
June 13, 2024

The Group Showcases Key Advances at MARTECH 2024

Events

pipe_inspection_g500_header-1
June 27, 2018

International experience: Life in HWU

News

RSNA
December 10, 2015

On our way to Chicago: Annual Meeting #RSNA15

Medical Imaging Lab, News